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DIGITAL SPECTRAL ANALYSIS

by
Anthony J. Villasenor
Goddard Space Flight Center

INTRODUCTION

Among the functions of the Test and Evaluation program at Goddard Space Flight Center are
the following:

1. To evaluate the structural properties of spacecraft and spacecraft components by using
spectral statistical analysis techniques to analyze vibration test data.

2. To simulate the spacecraft's solar environment as accurately as possible by using radia-
tion sources with spectra that are matched with the true solar spectrum as determined by
interferometric and spectroscopic techniques.

Test data from these two areas, structures and solar simulation, are sent to a digital computer
facility for spectral analysis. It was natural, therefore, that the requirements from these areas
led to this investigation of methods for efficient spectral analysis on a digital computer.

This paper presents some mathematical considerations of spectral analysis and some FORTRAN
computer programs that use the Fast Fourier Transform algorithm of Cooley and Tukey. These
programs compute Fourier afnplitude and phase spectra, cross-power spectra, auto- and cross-
correlation, and filtered spectra, as well as some other frequency domain functions.

SAMPLING CONSIDERATIONS

Let f(t) be a continuous function of t . The first step in analyzing f(t) by digital computer
is to sample it and obtain a finite set of discrete points X, (i=1, 2, 3...,N), which will repre-
sent the function f(t) in the computer. The process of sampling revolves around the Sampling
Theorem (Reference 1), which states that the rate of sampling should be at least twice the maxi-
mum frequency contained in the data. Twice the maximum frequency is actually a bare minimum,
and experience has shown that a sampling rate of five times the maximum frequency is usually
adequate for most applications, where the value of the maximum frequency is not precisely known,
Insufficiently sampled signals produce spectra containing'aliased" frequencies. For example,



Figure 1 depicts the Fourier amplitude spec-

trum of the curve
ALIASED FREQUENCY
A £(t) = sin (27450t /512).

The spike occurs at f = 62 Hertz in the

AMPLITUDE

spectrum. The Aliasing occurs because
the sampling rate of 512 Hertz was not enough
to detect the true 450-Hertz signal and in-

- | |
0 62 256 450 512 stead treated it as a 62-Hertz signal. We

FREQUENCY (Hertz) should have used a rate at least 2 X 450 or
900 samples per second. The rate of 512
Figure 1-Sinusoid of 450 Hertz sampled 512 times samples per second gives rise to a maximum
per second, resolvable (cutoff) frequency f_ of 256 Hertz.
The particular value of 62 comes from f =
2f - 450 = 512 ~ 450 = 62, This relation is due to the fact that the amplitude of any frequency f in
a signal sampled at 2f_samples per second equals the amplitude of the aliased frequency 2nf_+f,
where N is the number of points in the digitized sample. Thus for a time t = f_/2

277fCNif 7Tf
cos(27ft) = cos| ——— | = cos{—
2f, £/

In other words, the Fourier coefficient of the frequency f is the same as the Fourier coefficient of
the frequency 2Nf_+ f for the sampling rate of 2 f_samples per second.

DIGITAL SPECTRAL FUNCTIONS

Having sampled the function f(t), we can perform various general mathematical operations
on the data.

The Fourier Amplitude Spectrum describes the frequency content of the data in the form of
complex amplitude versus frequency. The term '"frequency' may be misleading because it refers
not to frequencies of our original function f(t) but rather to the number of times a particular
sinusoid occurs within our finite sampled data. In fact, when working with a computer we are
dealing with a Fourier Series expansion around the data even though we intend it to be a Fourier
Integral expansion of f(t).

The amplitude is given by
IR +iI |,

where

N

. 1 ~27mik(j-1)
R+ llk = N E Xj e

j=1



The Fouriev Phase Spectrvum describes the phase content of our data in the form of phase
angle (0 to 360 degrees or -180 to +180 degrees) versus frequency. The phase normalily indicates
changes of state of the f(t) generator. In the case of interferometer data, an abrupt change in
phase means that the light source has changed its temperature relative to the detector. In vibra-
tion data, an abrupt phase change indicates a resonance. The phase is computed as

6, =arc tan (I /R)).

The Powev Spectrum is a description of the relative power of f(t) as a function of frequency.
The Power Spectrum P(w) is the square of the Fourier Amplitude Spectrum,

P =R+ 12 = (R, + i L)(R, - i T

(Reference 2). The adjective ""power' comes from an electrical analogy. The total energy E of a
circuit is given by

E:J Pdt,

w©

where P is the power of the circuit in watts. But P = i?R, so that

0
E :J iZRd t.
-0

If we set R to be a unit resistance, and the current i to be a time-varying function x(t), then
by Parseval's equality,

"

E:I |x(t)|? dt :J |F(w) |2 dw,

where F(w) is the Fourier amplitude spectrum of the current x(t). The quantity |F(w)|? is thus
called the power spectral density or the power spectrum.

When x(t) is a finite, discrete function sampled at time intervals dt, we have a slightly dif-
ferent mathematical formulation. In this case, we can speak of the average power P, over a finite
time interval T of the current x(t) . The formulation is



t+T
P, =E/T=(1/T) J x(t)? dt.
t

If N samples are taken of the signal x(t), then T = Ndt and

N
P, =(1/N) E xj2A
j=1

We can now cite Parseval's equality, which holds that

N

i x 1228 ) Al

k=1

Substituting this in the above,

N

P - Z A 12

k=1

Hence the average power spectral density is [A [?.

The power spectrum is used, for example, in acoustics to determine the system gain factor
by finding the ratio of the output-power to the input-power spectrum. The energy or total power

is also of frequent interest.

The Auto-covvelation function describes the degree of interaction that a function has with itself
at various intervals along the time or distance axis. Auto-correlation for finite, discrete data is
presented in the form of correlation coefficient versus lag number. The correlation coefficient
at any lag varies from 1, if the function is exactly duplicated at this lag, to zero, if the function is
completely uncorrelated with itself at this lag, and to -1 if the function cancels itself out at this
lag. For example, any two points of a straight line are always exactly identical, hence the auto-
correlation is everywhere 1. A sinusoid is in phase with itself once every cycle, and 180 degrees
out of phase once every cycle, so the auto-correlation is a cosine curve with amplitude 1. Figure
2 shows examples of auto-correlations and power spectra.



For a finite discrete data set X, (i = 1, £ (N AUTO-CORRELATION POWER SPECTRUM
2,3,...,N), sampled at equispaced inter- S — -
vals, the auto-correlation is computed as a A STRAIGHT
function of "lag" number. For lag = 0, the une ST T T
data "comb'" of N points is multiplied by it-
self;for lag= 1, the data comb is shifted over LAG - 0  FREQUENTY

one point and N - 1 multiplications are per-
formed; for lag = 2, the comb is shifted EE— S
again for N - 2 multiplications. The process

continues for as many lags as desired, usually SINE CURVE
up to 10 percent of N.

LAG fo
The auto-correlation function for finite
discrete data is given by — —
WHITE NOISE T
N_L
1 1
R@L) = — —— X X 1,
() R(0) N-L £ 5o
i=t LAG FREQUENCY
Figure 2—Examples of autocorrelation and power
where L = lag number. Note the normalizing spectrum functions.

factor 1/R (0) without which this would be called an auto-covariance function. The background in
statistics — variance, correlation coefficient — is plain. In fact, R(0) is the sample estimate of
the true mean-square value in the data, and is related to the sample variance s? by R(0) =

[(N - 1)/N]]s? (Reference 1).

An important relationship exists between the auto-correlation function R (L) and the power
spectral density P (w): they are integral transform pairs. That is,

©

R(@L) = J- P (w) e27iW dy

and

P(w) = f R() e 2"k 4L.

Proof of this relationship is found in the literature under the heading "Wiener-Khintchine
Theorem'" (Reference 2). This relationship is important because the usual procedure for digitally
computing power spectra is to compute first the autocovariance and then transform it to the fre-
quency domain to obtain a first estimate of the power spectrum. The result is only an approximation



because the auto-covariance was computed for a finite number of lags, whereas the true

auto-covariance is an infinite function.

The Cross-corvelation indicates the degree of relationship between two data samples in the
form of correlation coefficient versus lag number. Again, complete correlation is 1, complete
uncorrelation is 0, and anti-correlation is -1. Cross-correlation differs from auto-correlation,
being defined as an imaginary quantity. The first step in this definition is to form R, (L) and
R, (L),-where

L = lag number,

1 1
Rx @) = X Y.,
’ R (0) ¥R (0) N-L 2. -

N-L
1 1
Ryx (L) = N-L yn xn+L'

YR (0) VR (®) —

Then the even and odd parts of the cross-correlation function are given by

1
E, @ = ; [ny(L) +R, (ML 1,
1
0, M =5 (R,, L) -R (D).

The Cross Spectral Density describes the frequency dependence between two signals. If two
signals are mutually independent and uncorrelated, the cross-spectrum is zero, but if they are
mutually dependent, the cross-spectrum is not zero and may indicate a frequency resonance for
the device connecting the two signals. The cross-spectrum S,y of two signals x(t) and y(t) is a
complex number with a real part (the co-spectrum) and an imaginary part (the quadrature spectrum)
The co-spectrum C,, depicts the in-phase relationship of two signals, while the quadrature spec-
trum Q,, depicts the out-of-phase relationship. The co-spectrum is traditionally computed as a
cosine transform of the even part of a cross-correlation, and the quadrature spectrum as a sine

transform of the odd part.

L
CO-SPECTRUM: cC_ (k) = 2lg 0) + 2 Z E. (4) cos rtk + (- DHRFEM
Xy N xy = Xy LM



L -1
QUADRATURE SPECTRUM: o, (k) = : Z Oxy (&) sin "ﬁ"
4.1 L
CROSS POWER SPECTRUM: S, =C,, - i Q.

where the cross-correlation is Ey +1i Q However, it is also possible to first compute the

ey
cross-spectral density of two signals by direct Fourier analysis, obtain F_(w) and F (W), then

combine these two series to get the cross-spectral density
Sxy (w) = F (w) Fy(w),

where F (w) denotes the complex conjugate of F, (w) (Reference 3). Then, by applying the Wiener-
Khintchine theorem, we immediately get the cross-correlation function R, as the inverse trans-
form of S,,.

FAST FOURIER TRANSFORM ALGORITHM

Since these spectral functions involve Fourier analysis computations, any algorithm that
offers an efficient means of computing spectra on a digital computer is much to be desired. There
are several sources of such algorithms in the literature. Two of these appear in a book (Reference
3). One algorithm by Goertzel makes a complex Fourier analysis of real data, using a simple
matrix manipulation for obtaining sines and cosines. The other algorithm, by Southworth, first
computes the auto-correlation for some percentage of the data, then performs a cosine Fourier
transform of the result in order to obtain the power spectrum, This is the method proposed by
Blackman and Tukey (Reference 4).

Both of these methods have drawbacks. Goertzel's program is exceptionally efficient, but
still consumes too much computer time. Southworth's program loses phase information and
can compute only a fraction of the total frequency content of a given data set.

More recently, James Cooley and John Tukey (Reference 5) introduced an algorithm that is
hundreds of times faster than either of these methods, Called the Fast Fourier Transform, this
algorithm analyzes or synthesizes a complex array of points whose size is (or can be built up
with zeros to give) a power of 2. That is, their algorithm is set up to analyze 2" points, where
m is any positive integer. If the data set contains 1000 points, for example, it should be extended
to 1024 = 21° points by adding 24 zero-valued points. The Cooley-Tukey algorithm is based on the
relationship existing between two analyses of N points each and one analysis of 2N points. That is,
if we desire a Fourier analysis of the 2N points X, (;=1,2,3,...,2N), it is faster to make one
analysis of the odd-index points (of which there are N) and another of the even-indexed points, and



then merge the two results to obtain a single analysis covering all 2N points. Since this relation
holds between one 2N series and two N-point series, then certainly each of the N-points analyses
can in turn be obtained by pairs of N/2-point analyses, and so on. This successive halving accounts
for the base 2. Cooley and Tukey have estimated that this method if N/log,N times faster than con-
ventional methods. Note that the errors associated with digital computation are also reduced by
this factor of N/log,N.

Thus, the plan inthe Fast Fourier Transform is to generate a 2N-Point analysis from two N-
point analyses. This procedure is straightforward. Given 2N complex data points X; (=1,2,
3 ..., 2N), we can split thesepoints into an "odd" array indexed1,3,5. .., 2N -1, and an
"even''arrayindexed2,4,6 ..., 2N. Let sequences of A_ 's and AA,'s represent the spectra
of these arrays, respectively. Then, if we consider separately the odd and even indexed points
in the expression for the "'total" representation, by substituting 2j - 1 and 2j in place of j, we
will eventually end with a relationship betweenthe A, 's, the 4A 's andall the C.'s which are the
Fourier coefficients of the 2N points. The representations would be as follows:

Odd indexed points:

N

- E 2mi(j-1)(k-1)/N
ij_l = Ak e mi(j D¢ ) R

k=1

Even indexed points:

N

X, = § AR e27ili=D(k=D/N,

k=1

where j =1, 2, 3, ...,N, Ina 2N-point analysis, the series would be

2N
X = E C, e2mi(i-1)(k=1)/2N
J — (j=1,2,3---,2N)

(The j and k indices range from 1 to N rather than the usual 0 to N - 1 to simplify programming
notation.) If now we consider the even and odd indexed points in this last summation,



_ 27i(2j-2)(k-1)/2N
X2,'-1 = Ck e (
k=1
Odd:
2N
- C e27i (j-1)(k-1)/N
) .
k=1
2N
. _ 2mi (2j-1)(k-1)/2N
Even: X, = G, eZ7i(2i-D)(k-1)/2N,
k=1
2N R
- E C, e27i(i=1)(k-1)/N . 27 i(k-1)/2N
k=1

Replace the index k by k' = k-N in the second half of each sum above (i.e. for k =N +1 tok = 2N},

N N
dd: - 27mi(j-1)(k-1)/N 27 i(j-1)(k’+N-1)/N
O Xpioq = C, e + Cpr,y €7 HUDN-/N,
k=1 kf=1
N N
B} E Ck e27i(j-1)(k-1)'N | E Ck’+N e2ﬂi(j—1)(k'—l)/Nv
=1 k=1
since e27iC(i-DNN < 1,
N
Even: xzj _ 2 C, e2mi(i-1)(k-1;/N 27 i(k-1)/2N
k=1

C, e2Ti(i—1)(k=1)/N 27 i(Nsk’=1)/2N
0 ‘+N ’

k=1



N

_ E ! c, Q27 =D(k=1)/N  27mi(k-1)/2N

k=1

N
- 27i(5-1)(k'-1)/N g2mi(k’-1)/2N
C'k"{,N € ’

k’=1
since

TE(NANY = 7 - C 1.

In these sums, k and k' are independent indices, so we can collect terms to get

N
. _ 27i(j-1)(k-1)/N
Odd: Xyq = E (€, + G e .
k=1
N
. _ 27i(j-1)(k-1)/N 2mi(k-1)/2N
Even: X, = ? G -Cn) © e .
k=1

Comparing this result with the definition of A, and AA , we have

Ak :Ck +Ck+N'

27 i (k-1)/2N
AA, = (C -C, ) e’ ¢ i

Solving this system of equations finally gives

C, = ‘;‘(Ak +AAk e—2'ni(k-1)/2N)y

N =

-27mi(k-1)/2N
(B - AR e 27D,

wherek =1,2,3...,N,

10
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These equations show that it takes N complex multiplications to go from the two N-point analyses

to a 2N-point analysis. To find the total time needed to make an N-point analysis by this method,

let My equal the number of multiplications needed for each of our N-point analyses. Let M,, equal
the total number of multiplications needed to end withthe 2N-point analysis. Then obviously

M2N = 2MN +N.

Since N = 2™, m successive doublings would give us the required N-point analysis — that is to say,
for the above iterative equation the initial condition is N, = 1. Solving the equation

Mzwi = 2My * N

(i=0,1,2..., m-1) we get M_=(N/2) log,N. To compensate for various computer overhead
operations, this can be overestimated as Nlog, N operations, as opposed to N? operations by
Goertzel's method. Hence the saving in computer time using Cooley's method is N/log,N times
the time by the old methods.

For a Control Data Corporation (CDC) 3100 computer with software floating point, Goertzel's
algorithm took 45 minutes to Fourier-analyze 2048 points. It took Cooley's method 18.3 seconds —
an enormous saving. It makes possible real-time digital spectral analysis. See Table 1 for
comparisons of execution times.

Table 1
Table of Comparison Times in Seconds
(CDC 3100 with Software Floating Point)

N, size of array
256 512 1024 2048 4096 _3532
Goertzel 429 169.8 675.7 2699.5
Harmon 14.0
Fourier 1.7 3.8 8.4 18.3 31.9
Aliasing 2.7 5.5 11.5 24.2
Double 18.9 62.8 114.4

COMPUTER PROGRAMS

Subroutine FOURIER

The original subroutine HARMON written by Dr. Cooley to carry out these operations is some-
what limited because it requires a complex data array as input. Most numerical data are real, not
complex. To solve the majority of problems, the subroutine FOURIER was written to take as

11



input a real N-point array and to return (N /2) + 1 complex amplitudes, Subroutine FOURIER
accomplishes this by the following procedure: First, it stores the odd-indexed points of the given
N-point array in the real parts of N/2 complex numbers, and the even-indexed points in the
imaginary parts. .Next, it makes a call to subroutine HARMON with N/2 complex points as input,
Finally, it extracts the odd and even pairs of amplitudes from the result and merges these to form
the (N/2) + 1 complex amplitudes of the original N points. The number of complex amplitudes is
(N/2) + 1 because the Fourier coefficients for real data satisfy:

A=A, ., (k=123 ..NN+1).

That is, the real and imaginary parts are respectively symmetric and antisymmetric about the
element k= (N/2) + 1. This relation yields the following identities:

Real part of A; = average of input data points
Imaginary part of A, = 0

Imaginary part ofA y, 5y, =0

A, = Ay _,(periodicity).

Thus, for real analysis we need only be concerned with the (N/2) + 1 complex amplitudes A,
Ay oo ey Ay o ANs2ysn - At this point, the procedure for accomplishing the real analysis is
straightforward. Given a complex array X, = X; +1i XS , where the superscript represent the odd
and even indexed real data points, respectively, we call HARMON to get the complex amplitudes
C.(k=1,2,3..,.,N). Thus any original complex point X, has the series representation

N
X = Z c Q27 (-1 (k=1) /N (1)
7=

At this point we can also introduce the Fourier coefficients A, and AA; (j=1,2,3...,N) repre-
senting respectively, the odd- and even-indexed series coefficients. We can write

N
xlc: - ? Aj eZ‘"’i(j-l)(k—l)/N’ (2)

j=1
and
N

X;f - ? :AA] e277i(j-1)(k—1)/N . (3)

=1

12



Substituting Equations 2 and 3 in Equation 1 gives

N
Xp 4+ iX$ = E (A + iAA) &77H DDA,
] 3
j=1

Taking the complex conjugate in Equation 1 gives

N

N
. N —2mi(i-1)(k-1)/N _ ~ 2mi(A-1y(k=1)/N
Xk_z C e ‘z Gudia © ’
L1

1]
-

j

(4)

(5)

where in the second summation the index j has been replaced by £ = N- j + 2, That is, starting

with

z :6} e 271 G- D (k=1I/N

and letting j = N - £ + 2, immediately gives the following identities:

~

a, = C'N-’E+2

@27 (=D (k-1)/N 2mi(N =Ly D(k-1)/N ezni(f ~1)(k-1)/N

e
j =1 becomes £ =N 41

j =N becomes £ =2

N Nl N
. bavd ~ ~
becomes = since CN_(N“)+2 =G, =6

i=1 =2 {1

so that (C) is demonstrated.

13



Combining Equation 1 and 4 gives
Cj = Aj + iAAj
Combining Equations 4 and 5 gives
Guojea = Ay - 184

Thus,

g
1

1 ~
j E(Cj tGuja2)

A - -1
] 2 )

_EN—J'+2)'

Now we have the odd and even amplitudes, which can be recombined to give

1 —2mi(j-1)/N
Cj— ;(A’.+AAje ),

Cujsa= & =L (K _RA, 27iG-0My Loy pp o270/
J 2 J J 2 J J

which is the desired result.

Subroutine ALIASING

Another routine written around the original Cooley program is subroutine ALIASING. Its
purpose is to determine, from N given real points, whether the sampling rate is sufficient. It also
computes Parseval's formula to determine the magnitude of calculation errors attributable to
digital roundoff. The routine returns with (N/2) + 1 complex amplitudes, just as if the routine
FOURIER had been called instead.

The method used in ALIASING is similar to the one in FOURIER: An N-point array is treated
as an (N /2)-point complex array, which is Fourier-analyzed with HARMON, The resulting spectrum
is split up into two spectra A_and AA_representing, respectively, the frequency components of the
odd and even indexed points of the given array. Each of these spectra represents a sampling
density of N/2 points; that is, half the actual density. Then both the odd and the even spectra
are merged to yield the desired final spectrum C, . The A, 's and AA 's represent the same sampling
density at alternating points, so that their difference (between odd-indexed and even-indexed points)

14



should be zero for each k. I the sampling rate is sufficient, the differences between A, and C,

and between AA_ and C, will also be close to zero. In addition, all the octaves Cy_, should be zero.
If any or all of these quantities are larger than the difference between A and AA_, then the sampling
density is insufficient or, at best, questionable.

The quantities returned by subroutine ALIASING are computed by the following formulas:

N/4

Odd-even: Z | 1A ] - |AA| |2
k=1
N/4 2
0Odd-both: Z Al - lc.t]
k=1
N/4
Even-both: Z ‘ |AA_| - Ic,| ‘2
k=1
N/4 2
Octave: | GQ2-na2 ' :

k=1

As an example, suppose that we generate a unit sinusoid of 450 Hertz, and sample it at 1024
points per second for 1 second. We know that all C,'s will be zero exceptC,, , which will equal
1. A call to ALIASING will yield zero amplitudes for all A's and AA's except for k = 62, when both
will equal 1. The frequency of 62 Hertz is the aliased frequency corresponding to 450 Hertz for
a sampling density of 512 points per-second. However, C,, will be zero, while C,5, will be 1. This
procedure would show the difference between the A's and AA's as zero, but obviously not zero for
the other differences. In order to capture the 450-Hertz sinusoid, we would have to increase the
sampling rate, say by a factor of 2.

Parseval's theorem simply says that the norm of the input data array should be equal to the
norm of the output amplitude array. This is a property of linear transformations used in computer
applications to determine the extent of error resulting from digital truncation. The statement of
Parseval's equality is

15



N N
E IinQ:NZIAk|2~
i=1 k=1

ALTASING deals with real data, however, so that

A = KN—k{. 2

Also, the amplitude of all components but A; and Ay,,y, are doubled because the routine computes
a symmetric two-sided spectrum, but only positive frequencies are of interest. Hence Parseval's
equality is computed as

N N N/2

- 2
Z Ix 1% = ;{ Z IA |2+ 2(A2 +A(N/2)+l)}.
iz1

k=2

Subroutine DOUBLE

It sometimes happens that the sampling rate yields too many points for a particular computer.
A Control Data Corporation (CDC) 3100 with 16,000 words of memory and standard FORTRAN can
handle at most 4096 points, using the Fast Fourier Transform. The routine called DOUBLE was
written to double any computer's capacity for Fourier analysis; it requires three scratch tapes.
The user puts his oversized array on tape, makes a call to DOUBLE, then reads in that same
tape to get his complex amplitudes. The user of course does not read and write his oversized
N-point array in a single command; instead, he must divide his array into four records of N/4
points each. DOUBLE does the same processing as FOURIER except for input/output (I/0) calls
and increased capacity. It should be mentioned that the complex amplitude Ay,,y,; is not returned
from DOUBLE. Also, if only frequency amplitudes are required and phase information is dis-
carded, then the user can save I/O usage and computer time by modifying DOUBLE to return just
the N/2 amplitudes.

Subroutine POWER

Another subroutine power takes as input data two real arrays X and v and returns in X with

the cross-power spectrum

P, (W) = 3 (X) 7 (Y).
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The power spectral density of a single array X may be computed by power as

P (w) = 5 X) 85X = |30,
but this would not be as efficient as computing the squared modulus of the complex spectrum re-
turned by FOURIER.

Subroutine COVAR

The routine COVAR uses CROSS to yield the cross-covariance of two given arrays. The co-
variance is computed as the inverse Fourier transform of the cross-power spectrum. COVAR
first computes the cross-power spectrum by calling CROSS, then performs an inverse Fourier
transform on this array to get the cross-covariance. For input arrays X and Y, the cross covariance
is returned in Y and the cross power spectrum in X. To obtain the correlation function, normalize
the covariance values by the "'zero lag" value of the covariance - i.e., the value v, .

Subroutines HANNING and HAMMING

The subroutine HANNING takes as input a real array A of frequency amplitudes. The Hanning
smoothing function is applied to the input, and the result is stored in array A, thereby replacing
the original contents of A. The Hanning function is defined by

A’ (1) = A(1) 4 A(2),
A'(N) = A(N-1) + A(N),
A'(i) = .5A(i-1) + A(i) + .5A(L + 1)
(i2 3 4...N_1.
The coefficients are customarily given as (0.25, 0.5, 0.25), but we are dealing here with one-sided
spectra so that a factor of 2 is involved.

The subroutine HAMMING applys the Hamming smoothing function to a given real array A, It
is defined by

A; =1.08 A +0.92A,
Al =1.08A, +0.92A,
AL =046 A _, +1.08A +0.46A,
(i=23..N-1.
Note that the factor 2 appears again in the coefficients, which are usually given as (0.23, 0.54, 0.23).

17



The usefulness of these little subroutines for analyzing data with discrete frequencies should
not be underrated; they compensate for the finite discrete nature of Fourier analysis when per-
formed on a digital computer. These simple digital filters perform two functions: they reduce
the resolution of spectral lines, and they increase the accuracy of relative height of spectral lines,
For continuous, smooth spectra, this is not too important, but spectra with sharp spectral lines can
be grossly misinterpreted if these two functions are not performed. In spite of the reduction in
resolution, some filter should be used in digital Fourier analysis. No filter actually corresponds
to using a sin x/x filter, which has undesirable high sidelobes that can lead to gross errors of com-

puted results,

AVERAGING FOR BETTER RESOLUTION

Often, a sample size of N points does not adequately describe the frequency content of the data,
probably twice as many points being needed. At this point it is often suggested that, rather than
resample the data at a higher sampling rate, we should just perform linear interpolations between
the given points to get the required point density - say, 2N points. The reply is that a linear
interpolation - or rather, a linear transformation — adds no new information to the data, hence no
new information to the spectrum. The proof is as follows:

Consider the N-point series representation

X - Ake2'ﬂi(j-1)(k—1)/NA

k=1

1

Suppose that we define a new sequence of points XX, located between the X, s such that
XX, = a; X, +b; X;

and such that the corresponding Fourier coefficients AA; are represented by

N

_ 27i (j-1)(k=-1)/N
XXJ. = E AA e .

k=1

In order to get the AA 's in terms of the A 's, we set
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I S A

_ 271 j(k-1)/N
xi+1 - Ak €
k=1
N
_ E : A Q2 - D=1)/N 27 i(k=1)/N,
k=1
Hence,
N N
s i(j-1 -1)/N ik~
XX. = a. Ak e2‘”1(3-1)(k—1)/N +bj Ak e2771(J Y(k=-1)/ e27'fn( 1)/N
j j 2 2
k=1 k=1
- 2! 27 i(k=-1)/N 2mi(i-1)(k-1)/N
= (aj A +bj A e ) e )
k=1
or

B 2mi(k-1)/N
AAk = a, Ak +bj Ak e .

This equation can easily be made independent of ; by assuming a uniform linear interpolation such
that a = a; and b="b; . Then we have

27 i(k-1)/N

AA - aA +bA €

27 i(k-1)/N

A (a+be )

Now if we merge these points X, and XX, , we form a 2N-point series X; s such that our original
points are the odd indexed X; and the linearly interpolated points are the even indexed X'j . Using
the equalities obtained earlier for merging series, we get, for k=1, 2,3, ..., N+ 1,

1 -27i(k~1)/2N
Go = (A + AR 727D,
:l [Ak +A (a+h e2ﬂi(k—1)/N) e—277i(k-1)/2N]

:_1_ A, [14+(a+h ezni(k-l)/N) e-27ri(k—1)/2N]'
2
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Also,

1 7i(k- - i(k-
CN+k :E Ak [1—(2 +be2 (k 1)/N) e-27i(k 1)/2N]_

This shows that the new series, with alternating points being linearly interpolated values, is merely
a modification of the old series by a complex exponential whose period is 2N points. The old fre-
quency components will be modified and no new ones will appear. This effect is easily seen if we
set a=b=1/2, for then

C, :% A [1 +% (1 4 e27ik=1)/Ny e—zwi(k—l)/m:,

e 27 i(k=1)/2N 27 i(k-1)/2N
A1+ ———
2

27(k - 1)
1 T
Ak < + cos N >

and >

CN+k: Ak<1-c052%1;_1—)>

1 1/2N N 3/2N 2N A
(@) CURVE f (1)

1
2

~

+1 ] =

N |~

(k=1,2,3...,
N+1)

N | =

The curve f(t) defined by

1 1 27k -1)\ for first half
— 4 cos ———
2 2N of spectrum

f(t)

l l J | 1 < 277(k-1)> for second half
1 - cos ——— ¢

1 1/2N N —2— 2N of spectrum

(b) SPECTRUM (typical)

(k=1,23...,N+1)

has the form shown in Figure 3(a). A typical
spectrum of N points is shown in Figure 3(b).
I

Illlu...

' | L The result of linearly interpolating between
1 N/2 N 3N/2 2N

points to get 2N points is shown in Figure 3(c).
(c) SPECTRUM WITH CURVE f (1)

Figure 3—Effect of averaging neighboring points
in a data sample.
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DIGITAL FILTERS

When an infinite and continuous function h(t) is sampled for digital processing, the actual function
considered by the computer is d(t) = g(t)h(t) , where g(t) is defined by

M

g(t):Z 5 (t - jAt).

j=—M

It equals 1 when t = jAt and is otherwise zero. This finite sequence of N, N = 2M + 1, equispaced
unit spikes, corresponding to N sampled points, is called a finite Dirac comb. Function g(t) is a
specimen of the so-called ""lag windows" that modify h(t) at different intervals or time lags.

When a Fourier transform is applied to d(t), the result is the same as convolving the Fourier
transforms of g(t) and h(t). That is, if G(w) and H(w) are the Fourier transforms of g(t) and h(t),
respectively, then the Fourier transform of the product g(t)h(t)is the convolution G*H, defined as

GH*H (w) f G(f)H(w - f)df = H*G(w).

-~

To see this, we compute

J g(t)h(t)e 271wt 4t = J h(t)[J G(fye27fit df} e-27iwt (¢

—0

J G(f)[J- h(t) 9‘2”’<""“tdt:l df

-

j G(f) H(w - £)df.

Thus, instead of multiplying two functions before transformation, we could equivalently convolve
their spectra represented by

G(w) :J g(t) e"ivtdt
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and
H(w) :I h(t) e~ ¥t dt.

The convolution G*H(w) represents an estimate of the true frequency content H(f) as seen through
a spectral window of variable transmission G(w - f). This spectral window is referred to as a
digital filter when applied to digital data; in that case, the discrete convolution takes the form

M

G*H(n) = Z G(j) H(n - j),

j=-M

which has the effect of spreading the "true' spectral amplitude H(n) by M weights on either side of
n. The H(n) are called "raw spectral estimates"; the G*H(w) are "refined (or smoothed) spectral
estimates'. In most cases G(w) has the form of a (sin L)/L function, which has a maximum peak at
L = 0 (equal to 1) and an infinite number of relative maxima oscillating in sign. The peak at L = 0
is called the main lobe, and the relative maxima are called side lobes.

The choice of a particular digital filter is based on the following considerations:

1, g(t) =0 for all t > |T|
Z0 otherwise

2, The main lobe of G(w) should be concentrated near L = 0 to reduce the resolution or band-
width represented by a particular frequency at w. This means that g(t) should be flat with sharp
cutoffs at +T, such as a square wave.

3. The side lobes should be as small as possible to reduce the contribution of other frequen-
cies at w- f to the final amplitude at w. This means that g(t) should be smooth and gradually
trailing off the O at t = £+ T,

The only way to satisfy all these requirements is to effect some sort of compromise deter-
mined by experiment.

The HAMMING and HANNING subroutines described earlier are digital filters that smooth
the spectrum and give discrete amplitudes a better relative representation at the cost of individual
peak resolution. It would be worthwhile to see directly the relationship between lag windows and
spectral windows for the popular Hanning function. The Hanning lag window is defined as
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1
g(t):-—1~<1+cusn—t [t] =T =}
2 T 2
=0 [l >T z
a
Figure 4 is the graph of the function. g
=
To obtain the Fourier spectrum of g(t), we %
compute 0
-T 0 +T
) 1 T
G(f) = J g(t) e-27iftge = Tf g(t)e-Zﬂift dt TIME, t (sec)

Figure 4—Hanning lag window function in

T
T T time domain,
-1 e"2mift g¢ 4 L f cos T e-27mift g¢ e
2T J, 2T J T

T T
:-1— (coswat—is'1n277ft)cit+l coslt— (cos 2m7ft - isin 27 ft) dt
2T T 2T - T

. 1 . 1
sin 2w<f—ﬁ>T 1 sin 277<f+ f’f>T
b=
2
2 (f - L omlf s L

2T 2T

Thus the spectral form of the Hanning lag window is the sum of a central term at frequency f, and
two other (sin x )/x terms displaced on either side of f by 1/2 T. The difference

sin 27fT
27 f

1
=
2

is the digital bandwidth of the filter. For a sample of N points, the bandwidth is 2/(N4t), since
NAt = 2T, Figure 5 is the graph of G(f) . Substituting G(f) in the convolution formula, we have

© 1 T in 2 AT sin277</ﬂ—-—2—1i_>T

G*H(f) = G(4) H(f-4) dd = = J Hee_py< Sncrt 1 N2/
T Jg 274 2 1
—® 27 {4 + 2_T

1
sin 277(/5 + ﬁ)T
1
2m </€ +ﬁ>

In the discrete case, a frequency f = f_represents the kt" harmonic in a {inite sample of length
2T, so the f, can be expressed as f, =k/2T. Hence if f = f, and4 = f,, we get

dat .

L
2
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ool e
T

FREQUENCY (Hz)

Figure 5—Hanning lag window function in
frequency domain.

NORMALIZED
AMPLITUDE

}_\//\\//\/Au C

FREQUENCY (Hz)

Figure 6—Dirac spectral window function,

7k
G(f) = NAt cos (W)

T
YA k-7\Jsinm?
GkH(fk)“GH(QT>'fT H<2T>{ 4

sin77(/ﬁ-—1)Jr 1 sintd+1) d4.
m(f-1) 2 74+ 1)

Integrating by parts gives
1 1 1
G*H(f)) = 5 H(f) + Z1{(fk+l) t 7 H(f, ) -

The coefficients are the triplet (0.25, 0.5,
0.25) usually given for the Hanning spectral
window. If we are dealing with one-sided
spectra (i.e., 0 < f < «x) rather than two-sided
spectra (-o <f < «), then these coefficients
should be doubled.

The spectral window corresponding to
the finite Dirac comb is

sin 27k
27k

sin wk/N

mk

N

Figure 6 is the graph of this function. The lobes are not as small as in the Hanning window, and

for that reason the latter is usually preferred.

Further information on digital filters can be found in Reference 4.

Goddard Space Flight Center
National Aeronautics and Space Administration
Greenbelt, Maryland, December 12, 1967
125-23-02-13-51
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Appendix A
Subroutine HARMON

SUBROUTINE HARMON(AsSsM>IFSs IFERR)
DIMENSION A(1)s51(1)

HARMs ONE-DIMENSIONAL BASIC FORTRAN VERSION. JeW.COOLEY
MODIFIED TO RUN ON CDC 3100,

HARM

HARM
HARM

DOES EITHER FOURIER SYNTHESIS»sI«EesCOMPUTES COMPLEX FOURIER SERIESHARM
GIVEN A VECTOR OF N COMPLEX FOURIER AMPLITUDESsORs GIVEN A VECTOR HARM

OF COMPLEX DATA X DOES FOURIER ANALYSISs COMPUTING AMPLITUDES.
A IS A COMPLEX VECTOR OF LENGTH N=2%*M COMPLEX NOS. OR 2*N REAL
NUMBERS. A IS TO BE SET BY USER.

M IS AN INTEGER OQeLTeMeLEes13s SET BY USER.

S IS A VECTOR S(J)= SIN{(2%*PI*¥J/NP )s J=142%eeeesNP/4-1>
COMPUTED BY PROGRAM.

IFS 1S A PARAMETER TO BE SET BY USER AS FOLLOWS-

1IFS=0 TO SET NP=2%%M AND SET UP SINE TABLE S.

IFS=1 TO SET N=NP=2%%M, SET UP SIN TABLE, AND DO FOURIER
SYNTHES1Ss REPLACING THE VECTOR A BY

X{(J)= SUM OVER K=0sN-1 OF A(K)*EXP(2*PI*J/N)¥*(J*K),
J=0sN-1» WHERE 1=SQRT(-1)

THE X-S ARE STORED WITH RE X{J) IN CELL 2%J+1
AND IM X(J) IN CELL 2%J+2 FOR J=051:2%eeesN-1.
THE A-S ARE STORED IN THE SAME MANNER.

IFS=-1 TO SET N=NP=2%%M,SET UP SIN TAgLEs AND DO FOURIER
ANALYSISs TAKING THE INPUT VECTOR A AS X AND

REPLACING IT BY THE A SATISFYING THE ABQVE FOURIER SERIES.
IFS=+2 TO DO FOURIER SYNTHESIS ONLYs WITH A PRE-COMPUTED S.
1FS==2 TO DO FOURIER ANALYSIS ONLYs WITH A PRE~COMPUTED Se.
IFERR IS SET BY PROGRAM TO-

=0 IF NO ERROR DETECTED.

=1 IF M IS OUT OF RANGE«s OR»s» WHEN IFS=+2,-2, THE
PRE~-COMPUTED S TABLE IS NOT LARGE ENQOUGH,

=—1 WHEN IFS =+1s-1» MEANS ONE IS RECOMPYUTING S TABLE
UNNECESSARILY.

NOTE-~ AS STATED ABOVEs THE MAXIMUM VALUE OF M FOR THIS PROGRAM
ON THE IBM 7094 IS 13« ON 360 MACHINES HAVING GREATER STORAGE
CAPACITY» ONE SHOULD CHANGE THIS LIMIT By REPLACING 13 IN
STATEMENT 3 BELOW BY LOG2 N, WHERE N IS THE MAX. NO. OF
COMPLEX NUMBERS ONE CAN STORE IN HIGH-SPEED CORE.

IF THE CAPACITY OF HARM IS TO BE INCREASEDs ONE MUST
ALSO ADD MORE DO STATEMENTS TO THE BINARY SORT ROUTINE
FOLLOWING STATEMENT 24 AND CHANGE THE EQUIVALENCE STATEMENTS
FOR THE K-S.

DIMENSION K(12)

EQUIVALENCE (K(11)sK1)s(K{(10)sK2)s(K{9)sK3)s{K(8)sK4)»(K(7)3K5)
EQUIVALENCE (K(6) sK6) s (K(5)sKT7)s{r{(4)sKB8)s(K(3)3sK3}s(K(2)sK10)
EQUIVALENCE (K(1)sK11)s(K(1)sN2)

IF{M)25253

IF(M=11) 59592

IFERR=1

RETURN

IFERR=0

N=2%%M

IF( IABS(IFS) - 1 ) 2005200510

WE ARE DOING TRANSFORM ONLY. SEE IF PRE-COMPUTED

S TABLE IS SUFFICIENTLY LARGE

IF{ N~NP )20,20,12

27

HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM

HARM

HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM

001

002
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049

055

057
058
059
060
061
062
063
064



28

12

20
22

24

25

28

30

31

32

34

36

40

50

IFERR=1

GO TO 200

SCRAMBLE As BY SANDE-S METHOD
K(1)=2%N

DO 22 L=25M

K{L)=K(L-1)/2

DO 24 L=M»10

K(L+1)=2

NOTE EQUIVALENCE OF KL AND K(14-L)
BINARY SORT-

1J=2

DO 30 J2=J1sK2sK1
DO 30 J3=J2sK3sK2
DO 30 J4=J3sK44K3
DO 30 J5=J49K55K4
DO 30 J6=J5+K69K5
DO 30 J7=J6+K7sK6
DO 30 JB8=JTsKBsK7
DO 30 J9=JB»K9sK8
DO 30 J10=J9,K105K9
DO 30 JI=J105K11sK10
IF(1J-J1)285930+30
T=A{1J=-1 )
AlIJ=-1)=A(JI-1)
A(JI-1)=T

T=A(1J})
AlTS)=ALJ])

A(JI) =T

1J=1J+2

J1=J1+2
IF(K1~-J1)31925+25
IF(IFS)32+2936

DOING FOURIER ANALYSISsSO DIVe BY N AND CONJUGATE.

FN = FLOAT(N)

DO 34 I=1>sN

Al2%]I-1) = A(2%1-1)/FN
Al2%1)=—-A(2%])/FN
SPECIAL CASE- L=1

DO 40 I=1sN»2

T = Al2%1-1)

Al2%1=1) =T + A(2%1+1)
A(2%]+1)=T-A(2%I+1)
T=A(2%1)

AL2%1) = T + A(2%1+2)
Af{2%#1+2)= T ~ A(2%1+2)
IF(M=1} 251 450

SET FOR L=2

LEXP1=2

LEXP1=2%%(L-1)

LEXP=8

LEXP=2%%(L+1)

NPL= 2%*MT

NPL = NP#* 2%¥-|

DO 130 L=2sM

SPECIAL CASE- J=0

DO 80 I=2sN2sLEXP

11=1 + LEXP1

12=11+ LEXP1

13 =12+LEXP1

T=A(1-1)
A(I-1) = T +A(12-1)
AlI2-1) = T-A(I2-1)
T =A(D)
AlI) = T+A(I2)
AlI2Yy = T-Al12)
= -A(I3)
TI = A(I3-1)
A{I3-1) = AlIl-1) - 7
AlI3 ) = A(Il1 ) - TI
A({I1-1) = AlI1-1) +T

HARM
HARM
HARM
HARM
HARM
HARM

HARM
HARM
HARM
HARM

HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM

HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM

HARM
HARM

HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM

HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM

065
066
067
068
069
070

072
073
074
075

078
Q79
080
081
082
083
084
085

089
090
091
092
093
094
095
096

097
098

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135



80

90

100
110
120

130

ccC

145
150

200

205

220

230

240
250
260

AlIl) = A(I1l )y +TI
1F{L-2) 1205120590
KLAST=N2-LEXP

JJ=NPL

DO 110 J=4sLEXP1s2
NPJJY=NT-JJ

UR=5(NPJJ)

UI=5s(4J)

ILAST=J+KLAST

DO 100 I= JsILAST,LEXP
I1=T+LEXP1

12=11+LEXP1
13=12+LEXP1
T=A(I12-1)*UR-A(12)%U]
TI=A(I2-1)*UI+A(12)%UR
Al12-1)=A(1-1)-T

AlI2 )=A(1 )y - TI
AlI-1) =AlI-1)+T
All) =A(1)+T1

==A(I3-1)*%UI-A({13)*UR
TI=A(I3-1)%UR~A(I3)*Ul
AlI3-1)=A(I1-1)-T

ACI3)  =A(I1 )-TI
ALT1-1)=A(I1-1)+T
ACI1)  =A(I1) +TI
END OF I LOOP
JJ=JJ+NPL

END OF J LOOP
LEXP1=2%LEXP1
LEXP = 2%LEXP
NPL=NPL/2

END OF L LOOP
IF(IFS)1459251

DOING FOURIER ANALYSIS. REPLACE A BY CONJUGATE.

DO 150 I=1sN
Al(2%]) =-A(2%])
GO TO 1

RETURN

MAKE TABLE OF S(J)=SIN(2%PI*J/NP)sJ=1323,eeeNT~15NT=NP/4

NP=N

MP =M

NT=N/4

MT=M-2

IFI{MT) 260+2605205
THETA=.7853981634
THETA=PI/2%%(L+1) FOR L=1
JSTEP = NT

JSTEP = 2%*( MT-L+1 )} FOR L=1
JDIF = NT/2

JDIF = 2%*(MT-L) FOR L=1
S(JDIF) = SIN(THETA)

IF (MT-21260+220+220

DO 250 L=2+MT

THETA = THETA/2.

JSTEP2 = JUSTEP

JSTEP = JUDIF

JOIF = JUDIF/2
S{JDIF)I=SIN(THETA)
JC1=NT-JUDIF
S(JC1)=COS(THETA)
JLAST=NT~-JSTEP2
IF(JLAST—JSTEP) 25092309230
DO 240 JU=JSTEPs»JLAST+JSTEP
JC=NT-J

JD=J+JDIF
S(JIDY=S(J)I*S(UC1I+S{UDIF}I*S(JC)
CONT INUE

IF(IFS)20s1520

END
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HARM
HARM
HARM
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HARM
HARM
HARM
HARM
HARM
HARM
HARM
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HARM
HARM
HARM
HARM
HARM
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HARM
HARM
HARM
HARM
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HARM

HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM

HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM
HARM

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

169
170

173
174
175
176
177
178
179
180
i81

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
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Appendix B
Subroutine FOURIER

SUBROUTINE FOURIER (AsSsMsIFS)

THIS ROUTINE PERFORMS AN ANALYSIS OF 2%x%M POINTS BY FIRST DOING
AN ANALYSIS OF 2%%M/2 COMPLEX POINTS AND THEN ARRANGING THE RESULTS

ARGUMENTS

le A - REAL DATA ARRAY — OF DIMENSION 2%xM + 2
2« S - SIN/COS TABLE - DIMENSION 2%%(M-3y

3. M — EXPONENT OF 2 - SIZE OF REAL ARRAY

4e IFS — -1 FOR FIRST TIMEs -2 THERAFTER

DIMENSION A(1)»5(1)

N = 2%#(M-1)

CALL HARMON{AsSsM—-1sIFSsIFERR}

MERGE 2 N-POINT ANALYSIS INTO 1 2N-POINT ANALYSIS

NHALF = N/2

NTWO = N*2 + 4

X = XO = C0S(3.1415926536/FLOATI(N))

Y = YO = SIN(3.1415926536/FLOAT(N))
00

DO 1000 K2 = 49sNs2

K1 = K2 -1

N2 = NTWO - K2

Nl = N2 - 1

BK1 = A(K1) + A{(NI1})

BK2 = A{K2) — A(N2)

BN1 = A(KZ2) + A(N2)

BN2 = A(KLl) - A(N1}

XBN1 = X*BN1

XBN2 = X*BN2Z

YBN1 = Y*BN1

YBN2 = Y*BN2

A(K1) = o5 *#(BK1 + XBN1l - YBN2)
A(KZ2) = .5 *{-BK2 + XBN2 + YBNI1}
A(N1) = o5 *#{BK1 - XBN1 + YBN2)
AIN2) = 5 *{BK2 + XBN2 + YBN1)
Q = X®¥XO = Y*YO

Y = Y*XO + X*YQ

X = Q

COMPLEX ELEMENT A(N)

A(2%N+1) =(A(1) — A(2))*.5
A(2%N+2) = 0.0

COMPLEX ELEMENT A(O)
All) = 5%(A(1}+A(2))

A(2) = 0.0

COMPLEX ELEMENT A(N/2)
AIN+1) = A(N+1)

A{N+2) = A(N+2)

RETURN

END
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Appendix C
Subroutine ALIASING

SUBROUTINE ALIASING (AsSsMs DATASUM,AMPSUM» ODDEVENSsODDBOTHS»
1 BOTHSUMs OCTAVES)

THIS PROGRAM COMPARES THE RESULTS OF THE GIVEN SAMPLING WITH

ARRAYS (0DD AND EVEN INDEXED) WHICH REPRESENT HALF THE SAMPLING DENSITY.
IF THE COMPARISONS ARE SIGNIFICANT, THEN ALIASING EXISTS FOR THE
HALF~DENSITY SAMPLEs AND PERHAPS ALSO FOR THE COMPLETE SAMPLE.

THE VALUES OF -ODDEVENS- AND -~OCTAVES- SHOULD BE AS CLOSE TO

ZERO AS NUMERICAL TRUNCATION AND/OR NOISE ALLOWSe. [IF THESE VALUES
ARE GREATER THAN, SAY 1400E-2, THEN ALIASING EXISTS FOR THIS SAMPLE
RATE.

A = GIVEN REAL DATA ARRAYs OF DIMENSION >%*¥M + 2 LOCATIONS
5 = SINE/COSINE ARRAY COMPUTED BY HARMON
M = EXPONENT OF 2

DATASUM - SUM OF INITIAL A(I)*%2 FOR PARSEVALS EQUALITY

AMPSUM ~ SUM OF FINAL A(I)**2 FOR PARSEVALS EQUALITY

ODDEVENS - ERROR BETWEEN SPECTRA OF ODD- VS. EVEN-NUMBERED POINTS
ODDBOTHS — ERROR BETWEEN ODD—INDEXED VS ALL POINTS

BOTHSUM - ERROR BETWEEN SPECTRA OF EVEN-INDEXED VS ALL POINTS
OCTAVES - SUM OF OCTAVES

DIMENSION A(1)sS5(1)
SET UP INDEX CONSTANTS

N1024 = 2%%M

N512 = N1024/2
N256 = N512/2
N1025 = N1024 + 1
N1026 = N1024 + 2
N1028 = N1026 + 2
N1030 = N1028 + 2
N513 = N512 + 1
N514 = N512 + 2
N516 = N514 + 2
N518 = N516 + 2
N770 = N514 + N256
N1544 = N1030 + N514

COMPUTE THE DATA SUM FOR PARSEVAALS EQUALITY

DATASUM = 0,0
DO 50 I = 1sN1024
DATASUM = DATASUM + A(I)*A(I)

CALL HARMON(A+SsM—1s-1s1FERR)

A513 = A(N513)
AS514 = A(N514)
A1025 «5*¥(A(1)~-A12))

Al1026 = 0.0

SORT COMPLEX SPECTRUM INTO ODD AND EVEN SPECTRA
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300

600

ODDBOTH = ABS(ODD-BOTH)
ODDBOTHS = ODDBOTHS + ODDBOTH
EVENBOTH = ABS{EVEN-BOTH}
BOTHSUM = BOTHSUM + EVENBOTH
AMPSUM = AMPSUM + BOTH + OCTAVE

Q = C*DC - S*DS

S = S*DC + C*DS

C=aQ

AMPSUM = FLOAT{N512)}%(AMPSUM+A513%A513+A514%A514+A1025%A1025%2,)

SORT THE SECOND HALF OF SPECTRUM

N1542 = N1544~2
DO 500 K2 = N516sN770s2

K1 = K2-1

KK2 = N1542 - K2
KK1 = KK2 = 1

AR = A(K1)

Al = AlK2)

A(K1) = A{KKI1)
A(K2) = AlKK2)
A(KK1) = AR
A(KK2) = Al

FILL IN CERTAIN LOCATIONS
A(N513) = A513
A(N514) = A514
A(N1025) = A1025
A(N1026) = 0.0
RETURN

END
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Appendix D
Subroutine DOUBLE

SUBROUT INE DOUBLE (AsSsMsN1sN2sN3)

ROUTINE TO DO FOURIER ANALYSIS OF REAL DATA OF SIZE 2%%M WHEN
CORE CAN ONLY HANDLE ARRAYS OF SIZE 2%%(M-1)

ARGUMENT LIST --

le A = DATA BUFFER WORKAREA - DIMENSION »%%(M-1)+ 2
THE EXTRA 2 LOCATIONS ARE FOR THE (COMPLEX POINT AT THE
MIDPOINT OF THE SPECTRUM

2« S = SIN/COS TABLE - SIZE ASSUMED TO BE 2%¥(M-4)

3¢ M = EXPONENT OF REAL DATA ARRAY

4e N1 = SCRATCH TAPE WHERE INPUT DATA IS STORED IN FOUR RECORDS ess

RECORD 1 CONTAINS A(l) eee A(N)
RECORD 2 CONTAINS A(N+1) eee Al2N)
RECORD 3 CONTAINS A(2N+1) .ae A(3N)
RECORD 4 CONTAINS A{3N+1) eee Al4N)

WHERE N = 2%%(M-2)
5e36¢ — N2 AND N3 ARE SCRATCH TAPES

DIMENSION A{1)sS5(1)sNTAPE(3)

NTAPE(2) = N2
NTAPE(3) = N3
M4096 = 2%%#(M-1)
M2048 = M4096/2
M1024 = M2048/2
M3072 = M2048 + M1024
M3073 = M3072 + 1
M2049 = M2048 + 1
M2050 = M2048 + 2
M4098 = M4096 + 2
MINUS = -1

REWIND N1

REWIND N2

REWIND N3

SORT DATA INTO ODD AND EVEN ARRAYS

DO 100 I = 1ls4

READ (N1) (A{L)sL=15M2048)

DO 110 J = 1sM1024

Jl = J + M2048

J2 = J + M3072

AlJ1Y) = Al2%0-1)

AlJ2) = A(2%J)

WRITE (N2) (A(L)sL=M2049,M3072)
WRITE (N3) (A{L)sL=M3073,M4096)
REWIND N1

REWIND N2

REWIND N3

DO FOURIER ANALYSIS OF ODD AND EVEN ARRAYS SEPARATELY

DO 200 IT = 2+3

NT = NTAPE(II)
11 =
12 = M1024

DO 201 I = 1ls4

READ (NT) (A(L)sL=I1s12)

11 = 11 + M1024

12 = 12 + M1024

REWIND NT

CALL FOURIER (AsSsM—-1sMINUS)
MINUS = -2

WRITE(NT) (A(L)sL=1+M2050)
WRITE(NT) (A(L)sL=M2049+M4098)
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200 REWIND NT

MERGE THE EVEN AND ODD SPECTRA

C

S

DC = CO0S(341415926536/M4096)

DS = SIN(3.1415926536/M4096)

DO 300 II = 1s2

READ (N2) (A(L)»sL=1sM2048)sARNSAIN

READ (N3) (A(L)sL=M20495M4096)sAARNSAAIN
DO 301 K = 15sM1024

K2 = 2%K

Kl = K2 -1

AR = A(K1)

Al = A(K2)

KK1 = K1 + M2048
KK2 = K2 + M2048
AAR = A(KK1)

AAT = A(KK2)

DR = AAR¥*C + AAI*S
DI = AAI¥C - AAR¥S

A(K1l) = .5%(AR+DR)
A(K2) = «5%(AI4D1)
A(KK1) = .5%(AR-DR}

A(KK2) =+5%(-AT+DI)

Q = C*DC - S*pS
S = S*DC + C*DS

301 C = Q
GO TO (321+322)511

321 A(M2049) = 5 % (ARN - C*(AARN+AAIN))
A(M2050) = 5 #* (-AIN + C*¥{AAIN-AARN))
GO TO 323

322 A{M2049) = ARN + AAIN
A{M2050) = AIN - AARN

323 CONTINUE
WRITE (N1) (A(L)sL=1sM2048)
M1 M2048+3
MM M4096 + M2048 + 2
M2 MM/2 - 2
DO 302 K = M1sM2y2
K1 MM-K
AR A{K1)
Al A(K1+1)
A(K1) = A(K)
A(K1+1) = A{K+1)
A(K) = AR
302 A{K+1) = Al
300 WRITE (N1) (A(L)sL=M2049,M4096)
REWIND N1
REWIND N2
REWIND N3

wonnwn nn

SORT SPECTRAL ELEMENTS INTO PROPER ORDER

READ (N1) (A(L)»L=15M2048)
READ (N1) (A(L)sL=15M2048)
WRITE(N2) (A(L)sL=15M2048)
READ (N1) (A(L)sL=1sM2048)
WRITE(N3) (A(L)sL=1sM2048)
READ (N1) (A{L)»sL=15>M2048)
WRITE(N3) (A{L)sL=1+sM2048)
REWIND N1

REWIND N2

REWIND N3

READ (N1} (A(L)sL=19M2048)
READ (N3) (A(L)sL=1sM2048)
WRITE (N1)}(A(L)sL=1,M2048)
READ (N3) (A(L)sL=1sM2048)
WRITE(N1) (A(L)sL=1sM2048)
READ (N2) (A(L)sL=15M2048)
WRITE(N1) (A(L)sL=1+M2048)



aNaXal

REWIND N1
REWIND N2
REWIND N3
RETURN

COMPLEX AMPLITUDES ARE ON SCRATCH TAPE Nj

END
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Appendix E

Subroutine HANNING

SUBROUTINE HANNING(AsN}
DIMENSION A(1)

NN =N -1

X1 = A(L)

Al1) = X1 + A(2)
DO 100 1 = 2NN
X2 = A(I)

AlI) = o5% (X1 + A(I+1) )
X1 = X2

A(N) = A(N) + X1

RETURN

END
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Appendix F
Subroutine HAMMING

SUBROUTINE HAMMING({AsN)
DIMENSION A(1)

NN =N -1

X1 = A(1l)

All) = 1.08%#X1 + ,92%A(2)

DO 100 I = 25NN

X2 = A(l)

AlT) = o46 % ( X1 + A(I+1) ) + 1.08 * X2

100 X1 = X2
AIN) = .92 % X1 + 1.08%A(N)
RETURN
END
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Appendix G

Subroutine COVAR

SUBROUTINE COVAR (X, Y, M, S)

X =REAL ARRAY OF DIMENSION 2**M
Y =REAL ARRAY OF DIMENSION 2**M
M =EXPONENT, 2**M =NUMBER OF POINTS
S =SINE/COSINE ARRAY USED BY HARMON

CROSS-VOVARIANCE IS RETURNED IN Y
CROSS POWER SPECTRUM IS RETURNED IN X

DIMENSION X (1), Y (1), S(1)
N =2""M

N1=N+1

N2 =2N

DO 50 I=N1, N2

X (1) =0

Y{1) =0

M=M+1

CALL POWER (X, Y, M, S
DO 100 I =1, N2

Y{) = x@)

CALL HARMON (Y, S, M-1, 2, IFERR)
RETURN

END
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Appendix H

Subroutine POWER

SUBROUTINE POWER(XsYsMsS)
DIMENSION X{1)sY(1)sS(1)
N = 2%%M

CALL FOURIER(X»sSsM)

CALL FOURIER(Y»SsM}

DO 100 I = 1sNs2

11 = 1+1

TEMP = X(I)*¥Y(I) + X(I1)*Y(]I1)
X(I1) = X{I)*Y(I1) = X{I1)*Y(])
X(I) = TEMP

RETURN

END
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